

Genomic insights into early and mid-late maturity of Korean *Oryza sativa* cultivars

Yejin Lee¹ and Yang Jae Kang^{1,2,3,*}

¹*Division of Bio & Medical Bigdata Department (BK4 Program), Gyeongsang National University, Republic of Korea*

³*Division of Life Science Department, Gyeongsang National University, Republic of Korea*

²*Research Institute of Molecular Alchemy, Gyeongsang National University, Republic of Korea*

*Corresponding author: kangyangjae@gnu.ac.kr

Rice (*Oryza sativa L.*) is staple food cultivated across numerous regions worldwide, playing a crucial role in global food security. Improving rice yield and quality is a primary goal in agriculture. Central to this is the genetic regulation of maturity timing and heading date, critical traits for optimizing harvest and productivity. However, genomic analysis in *Oryza sativa* has been limited by its reliance on the single reference genome of the *japonica* cultivar "*Nipponbare*", which fails to capture the vast genetic diversity among cultivars. In this study, we address this gap by performing *de novo* assembly of reference-level genomes for major Korean rice cultivars with distinct maturation times (early and mid-late) using both Nanopore and MGI sequencing data. By constructing a comprehensive pan-genome, we aim to identify the key genetic determinants controlling crop maturity. This work establishes a foundational genetic resource for developing tailored cultivars with enhanced yield and environmental adaptability, thereby deepening our understanding of major agronomic traits and advancing precision breeding technologies in rice.