

API-based curation of biomarker–therapy relationships for WGS-guided precision oncology

Mohammad Naushad Alam^{1,2,3}, Muhammad Junaid^{1,2,3}, Karolina Hanna Prazanowska^{1,2,3}, and Su Bin Lim^{1,2,3*}

¹*Department of Biochemistry & Molecular Biology, Ajou University School of Medicine*

²*Department of Biomedical Sciences, Graduate School of Ajou University*

³*BK21 R&E Initiative for Advanced Precision Medicine, Ajou University School of Medicine*

*Corresponding author: sblim@ajou.ac.kr

The rapid growth of biomedical literature and genomic data complicates timely identification of clinically relevant biomarkers. In this work, we present a hybrid literature-mining pipeline that couples deterministic rules with selective OpenAI API-based structured extraction to accelerate curation of biomarker–therapy relationships for precision oncology. We retrieved records from PubMed and PubMed Central using NCBI E-utilities and converted them into JSON format for efficient parsing, and applied structured prompt-based extraction to standardize entities such as gene symbols, variants, drugs, cancer types, assay methods, and clinical outcomes. Performance was strengthened through rule-based thresholds, lightweight domain-specific filters, and reproducibility logs employing harmonized vocabularies. At ~100,000 articles, our pipeline produces ranked evidence tables (gene–variant–drug–cancer, resistance/response, assay/context) that map directly to whole-genome sequencing (WGS) VCFs for patient-level annotation and reporting within hours. This rules-first, LLM-augmented design maintains transparency and reproducibility while improving coverage of non-canonical expressions. The framework operationalizes literature evidence for WGS-guided decision support in precision oncology.