

Baseline transcriptomic predictors of cognitive trajectories in Parkinson's disease

Kyu-Won Seo^a, HuiYan Zhao^{b,c}, Ojin Kwon^b, Eunbyul Cho^d, Jae Young Jang^{c,*}, Jung-Hee Jang^{b,c,*}, Sang-Min Park^{a,*}

^a College of Pharmacy, Chungnam National University, Deajeon 34134, Republic of Korea

^b Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-gu, Daejeon 34054, Republic of Korea

^c Korean Convergence Medical Science, University of Science & Technology, School of Korea Institute of Oriental Medicine, 1672 Yuseong-gu, Daejeon 34054, Republic of Korea

^d Department of Diagnostics, College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea

^eSchool of Electrical, Electronics, and Communication Engineering, Korea University of Technology and Education, Cheonan 31253, Republic of Korea

*Co-Correspondence to : Jae Young Jang, Ph.D. and Jung-Hee Jang, Ph.D. and Sang-Min Park, Ph.D.

Cognitive decline in Parkinson's disease (PD) is a critical unmet need with limited predictive markers. By linking baseline blood transcriptomes to subsequent cognitive outcomes, we identified molecular signatures that precede and anticipate decline. Baseline profiles already distinguished patients who later developed mild cognitive impairment or dementia, revealing early deficits in synaptic transmission, mitochondrial function, and calcium homeostasis. Strikingly, autonomic pathways emerged as central hubs. In the prodromal phase, gastrointestinal inflammation and mucosal barrier dysfunction were enriched and remained active through early decline. With progression, signatures shifted toward cardiovascular autonomic dysfunction, including impaired blood flow regulation, orthostatic hypotension, and hypertrophic cardiac responses, which dominated in advanced stages. This stagewise transition from gut inflammation to cardiovascular autonomic failure provides a mechanistic framework linking systemic dysfunction to cognitive trajectories in PD. Our findings highlight autonomic dysfunction as a driver of PD cognitive decline and nominate stage-specific biomarkers and therapeutic targets across the gut–immune–endothelium and cardiovascular autonomic axes.