

Integrative Multi-Modal and Multi-Omics Analysis Reveals APOE-SDC2 Signaling and Macrophage Polarization as Key Drivers of Chronic Fibrosis in Kidney Xenografts

Gaeun Byeon^{1,2*}, Minsun Jung^{3*}, Sun Ae Hwang⁴, Bomin Kim⁵, Minhee Seong⁵, Hwan Lee⁵, In Gyeong Koh^{1,2}, Kyu-Hyun Han⁶, Il Hee Yun⁶, Jeong Ho Hwang⁷, Jong Cheol Jeong⁸, Beom Seok Kim⁹, Hyunil Kim¹⁰, Sangil Min¹¹, Ik Jin Yun¹², Joon-Yong An^{1,13, #}, Jaeseok Yang^{5,6,9,#}

¹*Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea.*

²*L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea*

³*Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea*

⁴*Institute for Experiments of Non-clinical NHP Solid Organ Xenotransplantation, Konkuk University School of Medicine, Seoul, Republic of Korea*

⁵*Graduate School of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea*

⁶*The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea*

⁷*Non-Human Primate Minipig Translational Toxicology research, Korea Institute of Toxicology, Jeollabuk-do, Jeonbuk, Republic of Korea*

⁸*Department of Internal Medicine, Seoul National University Hospital Bundang Hospital, Seongnam, Republic of Korea*

⁹*Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea*

¹⁰*Department of Translational Animal Research, Optipharm, Inc., Cheongju-si, Chungcheongbuk-do, Republic of Korea*

¹¹*Department of Surgery, College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea*

¹²*Department of Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea*

¹³*School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea*

*Corresponding author: joonan30@korea.ac.kr & jcyjs@yuhs.ac

Despite considerable advances in genetic modifications and immunosuppressive therapies, chronic xenograft injury—characterized by interstitial fibrosis and tubular atrophy—remains a major barrier to long-term kidney xenograft survival in pig-to-nonhuman primate transplantation. While M2 macrophages are known to play dual roles in tissue repair and fibrotic progression, the mechanisms by which innate immune cells, particularly activated macrophages, contribute to chronic xenograft fibrosis remain poorly understood. We conducted a comprehensive multi-modal transcriptomic approach that integrates single-nucleus RNA sequencing (snRNA-seq), spatial transcriptomics (ST), bulk RNA sequencing (bulk RNA-seq), with proteomics across multiple time points and diverse donor-recipient immunogenetic contexts. Our analysis revealed that ci (interstitial fibrosis) and ct (tubular atrophy) score escalation correlates with macrophage polarization toward pro-fibrotic lipid-associated macrophage (LAM) and M2a phenotypes, driving tubulointerstitial fibrosis progression. Spatially resolved Graph Attention-based Cell–Cell Communication analysis identified a profibrotic immune–fibroblast niche enriched near the glomerulus and arteriole, with the APOE–SDC2 axis emerging as a key mediator of macrophage–to–fibroblast communication from these regions indicating that SDC2 inhibition could be explored as a potential therapeutic target in preventing chronic xenograft injury.