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GPU-accelerated homology search with MMseqs2
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Rapidly growing protein databases demand faster sensitive sequence similarity detection. We present GPU-accelerated
search utilizing intra-query parallelization delivering 6x faster single-protein searches compared to state-of-the-art
CPU methods on 2x64 cores—speeds previously requiring large protein batches. It is most cost effective, including in
large-batches at 0.45x MMseqs2-CPU speed (8 GPUs delivering 2.4x). It accelerates ColabFold structure prediction 31.8x
compared to AlphaFold2 and Foldseek search 4-27x. MMseqs2-GPU is open-source at mmseqs.com.
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Many advances in biology have been enabled by computa-
tional tools retrieving evolutionary related sequences (ho-
mologs) from reference databases (114). Building on the
sequence-based protein homology paradigm (5. 16), these tools
detect homologs to an input query among millions to billions
of reference entries by searching for similar amino acid se-
quences. Homology search is critical for inference of protein
properties (7H9) such as early secondary structure prediction
(10). Remote homologs have been shown to be pivotal as
input to contemporary deep learning methods like AlphaFold2
and others (11-13) to predict accurate 3D structures (14H16).
To retrieve remote homologs, sensitive tools to detect pair-
wise similarity between a query and reference sequences in
a database are required. Theoretically, high sensitivity can
be achieved by applying the dynamic programming-based,
gapped Smith-Waterman-Gotoh algorithm (17, [18) to find
the optimal path (alignment) (19) for each query-reference
alignment-matrix. However, the ever-growing size of refer-
ence sequence databases (15) renders this exhaustive approach
impractically slow. As a result, heuristic-based methods like
BLAST (1), PSI-BLAST (20), MMseqs2 (ref. 4), and DI-
AMOND (3) incorporate filtering techniques to prune the
majority of dissimilar sequences before executing the com-
putationally expensive gapped computation. This is typically
done by employing a seed-and-extend strategy, in which short
k-mer words (“seeds”) are indexed and matched, followed
by their extension to gapped alignments. Sensitive aligners
like HMMER (2) and HHblits (21) instead apply a simplified
dynamic programming filter, which scores all gap-free paths
(strict diagonals) of the alignment-matrix between sequence
pairs to find the highest scoring gapless match. Unlike k-
mer-based methods, being a lower-bound approximation of a
gapped alignment, gapless alignments result in a score for all
pairs at the cost of computational efficiency.

Several approaches were explored to achieve higher execu-
tion speed regardless of heuristic, like central processing unit
(CPU) specific instructions and parallelization, or employing
specialized hardware like Field-Programmable Gate Arrays
(FPGAs;[22), and Graphics Processing Units (GPUs; 23] 24).

! Department of Computer Science, Johannes Gutenberg University Mainz, Mainz,
Germany. 2NVIDIA Corp. *School of Biological Sciences, Seoul National Univer-
sity, Seoul, Republic of Korea. *Interdisciplinary Program in Bioinformatics, Seoul
National University, Seoul, Republic of Korea. >Department of Biostatistics and
Bioinformatics, Duke University, Durham, NC 27705, United States. ®Department
of Cell Biology, Duke University, Durham, NC 27705, United States. "Institute of
Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.
8 Artificial Intelligence Institute, Seoul National University, Seoul, Republic of Korea.
* These two authors contributed equally.

Here, we present two novel GPU-accelerated algorithms
(Fig.[Th,b) for gapless filtering and gapped alignment using
position-specific scoring matrices (PSSMs; [25). Integrated
in MMseqs2, they achieve speed comparable to fast k-mer-
based approaches while maintaining high sensitivity. We
confirm these findings through two benchmarks, one focusing
on homology retrieval, in the best setting achieving 17-fold (8
GPUs) or six-fold (1 GPU) speed-up compared to next fastest
CPU-based method BLAST, and on query-centered multiple
sequence alignment (MSA) generation for structure predic-
tion, achieving 176-fold speed-up compared to JackHMMER
and HHblits in AlphaFold?2.

Our GPU-accelerated gapless filter maps query PSSMs to
columns and reference sequences to rows in a matrix, then
processes each matrix row in parallel, while utilizing shared
GPU memory to optimize access to PSSMs (Fig. [Ik) and 16-
bit floating-point numbers packed in a 32-bit word (half2) to
maximize throughput. For gapped alignment, we incorporated
a modified CUDASW++4.0 (ref. 26) that operates on PSSMs,
employing a wavefront pattern to efficiently handle dynamic
programming dependencies.

In a synthetic benchmark of random amino acid sequences,
the gapless GPU kernel achieved up to 2.8x (single L40S) and
21.4x (eight L40S) speed-ups and peak performance of 13.5
TCUPS and 102 TCUPS, respectively, compared to a 2x64
CPU-core server (Fig.[Id), outperforming previous acceler-
ation methods by one-to-two orders of magnitude (22| 23).
When measured on real protein sequences, relative speed-
up compared to CPU increased to 18.4x and 110x, while
TCUPS peaked at 11.3 and 67.5 for 1 and 8 GPUs, respec-
tively (Fig. [Te; Methods, “Database scaling benchmark™; Sup-
plementary Data 1, “Ungapped peak performance”). It out-
performs previous accelerator-based approaches for gapless
filtering by one-to-two orders of magnitude, exceeding their
maximum reported performances of 1.7 TCUPS on an Alveo
U50 FPGA (22) and 0.4 TCUPS on a K40 GPU (23).

Prior to evaluating homology search speed of the combined
gapless and gapped alignment workflow, we sought parame-
ters allowing to reach similar sensitivity as measured on the
MMseqs2 benchmark (4). This resulted in evaluated meth-
ods reaching ROC1 between 0.391-0.409, specifically set-
ting MMseqs2-CPU k-mer with the -s 8.5 setting and DIA-
MOND with the --ultra-sensitive option. Furthermore,
to examine the ability of MMseqs2-GPU to increase sensitiv-
ity, we investigated iterative profile searches, where initial hits
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are converted into PSSMs that encode probabilities for each
residue in a sequence. MMseqs2-GPU reached ROC1 of 0.612
and 0.669 at two and three iterations, respectively. This was
slightly higher than PSI-BLAST, reaching 0.574 and 0.591,
and slightly lower than JackHMMER, which benefited from
its Hidden-Markov-Model-based profiles in higher search iter-
ations and reached 0.614 and 0.685 at two and three iterations,
respectively (Methods, “Sensitivity”; Supplementary Data 1,
“Sensitivity benchmark™).

We then benchmarked speed for homology search focusing
on two common scenarios: a single query protein against
a target database of roughly 30M sequences (single-batch),
common for scientists working on a protein system, and a set
of query proteins against the same 30M target database (large-
batch, i.e. 6370 queries), common for proteome analysis.
MMseqs2-GPU on a single NVIDIA L40S outperformed the
commonly-used JackHMMER, being 177 (single-) and 199
(large-batch) times faster (Fig. Za; Supplementary Data 1,
“Search tool comparison”). In single-batch, MMseqs2-GPU
was 6.4 times faster than the second-fastest method BLAST
(Fig. Eh, left), while at batch size 100 it was 1.9 as fast as the
second-fastest in that setting, MMseqs2-CPU k-mer (Fig. |Zk1
middle). At batch size 6370, MMseqs2-CPU k-mer on a 128-
core CPU system was about 2.2x faster than MMseqs2-GPU
on a single L40S, however on an 8 GPU system, MMseqs2-
GPU takes the lead at 2.4x the speed of MMseqs2-CPU k-mer
(Fig. Zh, right). On a single HI00 GPU system MMseqs2-
GPU followed similar trends to one NVIDIA L40S while an
A100 is 1.6x slower (Supplementary Data 1).

Diamond benefited from batching more than MMseqs2-GPU
(Fig. [2h, slopes from left to right). Therefore, we further in-
vestigated Diamond’s batching behavior by using larger batch
sizes (10,000 and 100,000 sequences). We found that Dia-
mond’s average per-query speed does not improve and remains
around 0.42s, which was measured on batch 6370. At batch
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Fig. 1. MMseqs2-GPU workflow and gap-
less alignment performance. (a) The gap-
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size 6370, MMseqs2-GPU and MMseqs2-CPU k-mer reached
0.37 and 0.17 seconds per query, respectively, making them
overall faster than Diamond (Methods, “Diamond scaling’;
Supplementary Data 1, “Search tool comparison”).

To provide cloud cost estimates, we compared AWS EC2
pricing. MMseqs2-GPU on a single L40S instance was the
least-expensive option across all batch sizes. MMseqs2-CPU
k-mer on 2x64 cores was 60.9 and 1.6 times more costly for
single-batch and large-batch workloads, respectively (Fig. 2h).
Additionally, we also investigated energy consumption in the
single-batch scenario. MMseqs2-GPU achieved the highest
energy efficiency in a hardware configuration with four L40S
GPUs, where it achieved 80.7 and 2.1 times higher energy
efficiency than JackHMMER and MMseqs2-CPU k-mer, re-
spectively (Supplementary Data 1, “Energy consumption”).
Yet higher energy efficiency of 95 (vs. JackHMMER) and 2.5
(vs. MMseqs2-CPU) times could be observed when running
MMseqs2-GPU on a system with 16 CPU-cores and one L4
GPU (Supplementary Data 1, “Energy consumption”).

Over time, MMseqs2’s k-mer-based filtering was optimized to
handle smaller input batch sizes, particularly for web servers
(27) and to generate MSA input for ColabFold (28), however
requiring substantial RAM (up to 2TB) for fast MSA genera-
tion within ColabFold. MMseqs2-GPU addresses this issue,
requiring only one byte per residue in the target database com-
pared to ~ 7 bytes per residue required for MMseqs2-CPU
k-mer, which can further be reduced by clustered searches
against representative sequences followed by member realign-
ment. On top, MMseqs2-GPU allows searching large refer-
ence databases by distributing them across multiple GPUs,
resulting in additional speed-up, or by streaming them from
host RAM at a slow-down. The latter enables processing
databases larger than the available GPU memory, albeit at 63
to 65% of in-GPU-memory processing speed (Fig. , Supp.
Fig. [} Methods “Database Streaming”).
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Fig. 2. MMseqgs2-GPU runtimes for homology search. (a) In single-batch processing, MMseqs2-GPU on a single L40S GPU (dark green; baseline execution time in bold,
horizontal) is ~six times faster than the second fastest BLAST (dark blue; top vertical numbers), and ~178 times faster than JackHMMER (purple) on average for 6370 queries
against a 30M target database. MMseqs2-GPU can split the target database across GPUs to enable larger database searches, also achieving a speedup compared to single
GPU execution (up to five times faster on eight L40S compared to one; bright green vs. dark green). When present, JackHMMER values refer to measuring 10% of the queries,
as execution time for 6370 queries was prohibitively inefficient. Similarly, execution time for Diamond ultra sensitive in the single-batch setting refers to 10% of the query set. For
all batch sizes, MMseqgs2-GPU on one L40S provides the lowest AWS cost for execution. In fact, even while MMsegs2-CPU k-mer in batch 6370 provides faster execution, it
results 1.6x more costly than MMsegs2-GPU on one L40S (bottom vertical numbers). (b,c) Faster folding speeds at no accuracy cost. On 20 CASP14 targets, ColabFold
leveraging MMseqgs2-GPU (green) results 1.65 and 31.78 times faster than ColabFold using MMseqs2-CPU k-mer (orange) or AlphaFold2 using JackHMMER and HHblits
(violet), respectively. All methods reach similar TM score (~0.70+0.05). Here, MMseqgs2 searched through 238M cluster representatives and subsequently expands to 1B
members, while JackHMMER searched through 426M sequences and HHblits searched through 81M profiles containing 2.1B members. (d) Foldseek built on MMseqgs2-GPU
on one L40S (dark green; baseline execution time bold, horizontal) reaches four times the speed of Foldseek-CPU k-mer (orange; vertical numbers) even at large-batch size
(6370) due to required higher sensitivity. Scaling to eight L40S GPUs speeds-up execution seven and 27 times compared to one L40S and Foldseek-CPU k-mer, respectively.

Computational protein structure prediction has become
ubiquitous since the release of AlphaFold2 (ref. [11) and
RoseTTAFold (12) in 2021. Variations of these methods using
alternative representations were introduced for higher through-
put (29); however, methods that leverage query-centered
MSAs remain the most accurate (14). We compared the ho-
mology search and structure prediction steps for the single
batch scenario common for protein prediction servers for three
variants: the canonical setting of AlphaFold2 leveraging HH-
blits (21) and JackHMMER (2), and ColabFold leveraging
either MMseqs2-CPU k-mer or MMseqs2-GPU on one L40S.
The AlphaFold2 search pipeline targets S06M entries (426M
sequences and 81M profiles, the latter containing ~2.1B clus-
ter members). The ColabFold-MMseqs2 pipeline conducts
two three-iteration profile searches against in total 238M clus-
ter representatives, and then expands and realigns to search
one billion cluster members (Methods “Structure prediction”).

We compare these pipelines for structure prediction of 20 free
modeling sequences from CASP14 (ref.|30). ColabFold uti-
lizing MMseqs2-GPU was fastest, overall being 1.65x faster
than ColabFold MMseqs2-CPU k-mer and 31.8x faster than
AlphaFold2 leveraging HHblits and JackHMMER (Fig. [2c),
showcasing MMseqs2-GPU’s suitability to metagenomics-
scale searches. A key reason for this overall speedup is the
MSA generation step: computing MSAs was 176.3x and
5.4x faster using MMseqs2-GPU compared to using JackHM-
MER-+HHblits and MMseqs2-CPU k-mer, respectively. Con-
sequently, while MSA computation on the CPU consumes the
majority of runtime in AlphaFold2 (83% of total execution
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time; Supplementary Data 1, “Folding tool comparison”), of-
ten resulting in idle GPU time or necessitating splitting MSA
and model inference onto different systems for optimal per-
formance, ColabFold paired with MMseqs2-GPU crucially
reduces MSA generation to only 14.7% of total execution
time, allowing seamless execution on a single GPU-equipped
system. These speed differences had no effect on prediction
accuracy, with all three configurations achieving TM-score
around 0.70+0.05 (Fig. 2Zb; Supplementary Data 1, “Folding
tool comparison”).

MMseqs?2 serves as the backbone to various methods through
its modular architecture, such as the protein structure aligner
Foldseek (31). Foldseek requires high sensitivity to obtain
good structure alignment, reducing the advantage of fast
k-mer-based double-diagonal search. We measured Fold-
seek’s search speed for CPU (Foldseek-CPU k-mer) and
GPU (Foldseek-GPU) on 6370 protein structure queries sam-
pled from the AlphaFold Database clustered at 50% structure
identity, searching them against the same reference database.
Foldseek-GPU on a single L40S outperformed Foldseek k-
mer using 2x64 CPU-cores by a factor of 4, and was ~27.3
times faster on eight L40S GPUs (Fig. 2d). Repeating the
Foldseek SCOPe-based sensitivity benchmark with Foldseek-
GPU yielded modest increases in sensitivity across Family
(0.874 vs. 0.861), Superfamily (0.493 vs. 0.487), and Fold
recognition (0.108 vs. 0.106) compared to Foldseek k-mer.

MMseqs2-GPU ranks as the fastest and cheapest evolutionary
search tool across various experiments. Unlike word-based
search methods (1} 3} 4), MMseqs2-GPU’s sensitive gapless
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filter, similar to JackHMMER, does not allow trading sensi-
tivity for speed. However, reaching high-sensitivity through
iterative profile searches is essential for detecting remote ho-
mologs, which is critical for tasks like structure prediction
(14), making it an excellent choice for these workflows.

Our experiments ran on a server with 1'TB RAM and 256
threads — high-performance computing resources typically
out of reach for most academics. MMseqs2-GPU overcomes
this limitation both by reducing memory requirements, and
by offloading compute-intensive tasks to the GPU. Even on
a cost-effective GPU like the NVIDIA L4 with 24GB RAM,
which is available through platforms such as Google Colab
Pro in combination with a 6-core/12-thread CPU and 64GB
RAM, MMseqs2-GPU accelerates searches over CPU-based
methods, offering a ten-fold speed increase over JackHM-
MER in searching UniRef90 (2022_01, 144M proteins, Meth-
ods & Supplementary Data 1 “Colab benchmark’). While
GPU memory can be a limitation, MMseqs2-GPU mitigates
this with four strategies: reduced memory footprint, efficient
database streaming, partitioning, and clustered searches.

We demonstrated that MMseqs2-GPU reduces the end-to-
end execution time of protein homology search and structure
prediction without compromising accuracy, enabling higher
throughput at lower cost (Fig. ). Many bioinformatics appli-
cations rely on homology searches and could benefit immedi-
ately. For example, orthology inference tools that already use
MMseqs?2 can seamlessly switch to the GPU backend (32, 133)),
as well as structural protein search methods like Foldseek
(31). Especially workflows that already leverage GPUs, but
are impractically slow at inference, like retrieval augmented
protein language models (34), stand to benefit. Therefore,
MMseqs2-GPU broadens access to rapid and affordable ho-
mology searches.
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Online Methods

A. Background: fast sequence comparison principles

Filtering is an essential step in homology search to reduce
the overall execution time by ranking all reference database
sequences quickly, and filtering a subset against which the
computationally more demanding Smith-Waterman-Gotoh
can be run. As one of the earliest tools, BLAST (1) proposed
index structures for initial seed finding with bi-directional
gapless extension to match a given minimum score.
MMseqs2 (@) introduced a filtering approach based on double-
consecutive k-mer matches on the same diagonal. Through
this approach, all k-mers of a reference database are stored in
a random-access-memory (RAM) based index structure for
quick retrieval (hereafter the index). For single query searches
at high sensitivity, MMseqs2 generates long lists of similar
k-mers from the query sequence and matches them against
the index to check the filtering criterion of two consecutive
matches on one diagonal. While highly optimized, random
accesses to the index results in poor cache-locality.

Diamond (3] generates lists of k-mers for both queries and ref-
erences in order to sort and compare them co-linearly. Instead
of similar k-mers, Diamond utilizes multiple spaced-k-mer
patterns. Co-linear comparison results in improved cache-
locality at the expense of indexing and sorting overhead.

In contrast to word-based filtering approaches, HMMER (Z2)
and HHblits @I) implemented a more sensitive, albeit slower
ranking technique by simplifying the Smith-Waterman-Gotoh
algorithm to perform a gapless alignment (i.e., excluding
gaps). In essence, this allows finding the longest common
subsequence (LCS) consisting of residue substitutions only
between any pair of sequences, allowing for better resolution
than word-based methods.

Modern hardware accelerators like GPUs lend themselves
to highly parallel workflows through their high core count,
albeit at lower operational complexity per core. Thus, the
gapless filtering is well suited to exploit their capabilities,
due to reduced instruction count with little data-dependencies,
while additionally avoiding branching and random memory
accesses typically employed in k-mer index lookups.

B. MMseqs2-GPU algorithm and parallelization

Pairwise gapless alignments are computed between a query
represented by the PSSM () and each reference sequence.
Q@ is constructed either through a single query sequence
and a substitution matrix, or from a sequence profile, based
on previous search results. Once computed, () provides
a score for placing any amino acid at any position along
the length of the query. Next, our gapless filter computes
a pairwise local alignment between the reference sequence
S = (s1,...,5n) and the PSSM @ of length m by dynamic
programming (DP), and populates a matrix M using the recur-
rence relation M [i,j] = max{M(i—1,j — 1)+ Q[i,s;],0}
for all 1 <7 <m,1 <j <n. Initialization is given by
MTi,0] = M|0,7] = 0. Algorithm [I| outputs the maximum
value in M, which represents the score of the optimal local
alignment without gaps (a.k.a., gapless) between S and Q.
The top k sequences passing an inclusion threshold are then
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passed to a Smith-Waterman-Gotoh algorithm operating on

profiles. Both of these algorithmic steps are executed on GPU.

Input :Protein sequence S| of size n, PSSM Q] of
size m x |X|

Qutput : Score

Score < 0;
for i <~ 0 tom do
| M]Ji,0] <0
end
for j < 0 ton do
| MI0,j] <0
end
for i <+ 1 tomdo
for j < 1 ton do
M(i,5) < max{M(i—1,j—1)+Qli,s;],0};
Score < max{Score, M(i,j)};
end
end
Algorithm 1: Gapless filter score computation

B.1. CPU-SIMD gapless filter. MMseqs2 offers a gapless fil-
ter accelerated on CPUs through Single Instruction Multiple
Data (SIMD) instructions, through the ungappedprefilter
module first introduced in MMseqs?2 6.f5alc. In this work, we
describe the module, its integration into the MMseqs2 search
workflow with --prefilter-mode 1 and its extension to in-
corporate soft-masking of low-complexity regions with tantan
(35)—in addition to the GPU integration described below.
The filtering process begins by preparing a striped query pro-
file (30) on a single thread, and finally utilizes all available
CPU-cores to linearly compare all reference sequences on
disk. During filtering, all soft-masked target database amino
acids are represented as the unknown X residue.

At its core, the gapless alignment follows Farrar’s (36) striped
Smith-Waterman-Gotoh first used in HMMER @]) which is
adjusted to compute only the gapless diagonal. It avoids affine
gap computation and requires only five SIMD operations to up-
date a striped query segment to retrieve the maximum gapless
diagonal score.

The algorithm uses 8-bit integers to represent alignment scores
to maximize the parallel SIMD register usage. Scores that
exceed the 8-bit limit of 255 are clamped to 255, which is sig-
nificant and indicates a strong potential match. Such matches
are then aligned using full Smith-Waterman-Gotoh. Depend-
ing on the supported instruction set of the CPU this gapless
implementation uses 128-bit (SSE2) or 256-bit (AVX2) vector
size. We also evaluated AVX512 and found only a marginal
performance benefit and did not implement it. In addition, our
implementation exploits multi-core CPUs by computing dif-
ferent target sequences independently using multi-threading.

B.2. GPU-accelerated gapless filter.

Core algorithm. We present a novel implementation of a
gapless filter on GPUs, designed to leverage the simplified
dependency scheme inherent in gapless alignments for high
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parallelism and performance. Unlike the Smith-Waterman-
Gotoh algorithm, where each cell in the DP matrix depends
on its top, left, and diagonal neighbors, gapless alignment re-
duces this dependency to only the diagonal neighbor (Fig. [T).
This crucial simplification enables parallel computation across
all cells within the same row, potentially enhancing process-
ing speed in comparison to more complicated parallelization
schemes, such as wavefront parallelization typically employed
to accelerate gapped Smith-Waterman computation. However,
to realize this potential, the design of an appropriate paral-
lelization scheme is required that optimizes necessary memory
accesses and inter-thread communication, while efficiently
handling highly variable sequence lengths.

Memory accesses and data types. To optimize memory
accesses and performance, the query PSSM is stored in shared
memory, facilitating fast, multi-threaded access (Fig. [Tk).
Meanwhile, reference sequence residues, which map to the
y-axis of the DP matrix, are stored in global memory, requir-
ing one byte per residue. Our calculations employ 16-bit
floating-point numbers or 16-bit integers, supported by the
DPX instructions available with NVIDIA’s Hopper GPU ar-
chitecture, packed into a 32-bit word using half2 or s16x2
data types.

Thread grouping and tile optimization. Drawing inspiration
from CUDASW++4.0 (26), our implementation assigns each
gapless alignment task to a thread group, with typical sizes of
4, 8, or 16 threads. This configuration allows multiple thread
groups to handle different alignments concurrently. The DP
matrix is processed row-by-row, with each row partitioned
among threads that are responsible for up to 128 cells each.
To optimize performance across various query lengths, we em-
ploy different tile sizes, which are determined by the product
of the thread group size and the number of columns processed
per thread. They are realized as template parameters, with
the group size constrained to be a divisor of 32, and half the
number of columns being a multiple of 4. Optimal tile size
configurations for different query lengths were identified via a
separate grid search program, minimizing out-of-bounds com-
putations when the query length is less than the tile size. As
the processing begins, reference sequence residues are loaded
from global memory, and each thread accesses its correspond-
ing values from the scoring profile. To boost throughput,
we designed the memory access pattern so that each thread
loads eight consecutive 16-bit scores from shared memory in
a single instruction.

Shared memory bank conflict mitigation. ~We further opti-
mized shared memory access for thread groups of size four
to mitigate bank conflicts. Shared memory is organized into
32 four-byte banks, and we utilize two-byte values in the
PSSM, meaning two columns are packed per four-byte word.
The PSSM is arranged in shared memory such that the i-th
four-byte column maps to memory bank 7 mod 32.

A warp-wide load from shared memory is broken up into one
or more hardware transactions of size 128 bytes served by
the 32 memory banks. Bank conflicts occur when multiple
accesses within the same transaction target the same bank but

different addresses, leading to serialization. This can arise
when multiple thread groups within a warp access the same
PSSM columns but different rows (corresponding to different
residues in the reference sequence). For group sizes of eight
or larger, this is not an issue, as each group loads 8 x 16 =
128 bytes, thus fitting a single transaction. However, with a
group size of four, each group loads only 4 x 16 = 64 bytes.
This allows a second group to load from a different PSSM row
(but the same columns) within the same transaction, resulting
in a two-way bank conflict. To resolve this, we employ two
copies of the PSSM in shared memory. These copies are stored
such that the i-th thread group consistently uses memory banks
0-15if 7 is even, and banks 16-31 if 7 is odd. This ensures that
accesses from different groups within the same transaction
are directed to distinct memory banks, eliminating the bank
conflict.

Per-cell computation and warp shuffles. Once the scores
are loaded, threads perform computations for their assigned
columns. Each thread performs the following operations for
each cell: (1) adds the score from the scoring profile to the
value from the previous diagonal cell, (2) sets the result to
zero if it is negative, and (3) updates the local maximum
score if the current cell’s value exceeds it. To facilitate data
communication between threads within a group, particularly
for diagonal dependencies, we use warp-shuffle operations.
Since the group size is at most 32, all threads within a group
belong to the same warp. Warp shuffles allow for efficient
register-based data exchange between threads, avoiding slower
shared memory access with explicit synchronization, or the
even slower use of global memory.

Data permutation and vectorization. To double computa-
tional throughput, we utilize hardware instructions capable
of processing two 16-bit values packed into a 32-bit word.
However, direct packing of neighboring matrix columns into
a single 32-bit word introduces dependencies that hinder in-
dependent processing. To address this challenge, we apply
a data permutation technique that rearranges columns within
a thread, aligning diagonal dependencies directly within the
packed data. For example, in cases where a thread handles
32 columns, we pack columns (0, 16), (1, 17), (2, 18), and
so forth. This arrangement ensures that each pair of packed
columns corresponds to cells that are diagonally adjacent in
the DP matrix. As a result, the dependency between packed
values is restricted to the preceding value from the previous
row, enabling full exploitation of vectorized operations for
computational efficiency.

Long sequence handling.  This strategy allows matrix tiles
with up to 2,048 columns to be processed efficiently with a
thread group of size 16. For protein sequences exceeding
2,048 residues, the profile matrix is divided into multiple tiles
processed sequentially. In such cases, the last column of each
tile is stored in global memory to serve as the starting point
for the first column of the next tile.

Multi-GPU Parallelization. To maximize performance on sys-
tems with multiple GPUs, we distribute the reference database
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across the available GPUs. Specifically, the target database
sequences are split into chunks, and each GPU processes a
separate chunk against the query sequence. The results from
each GPU are then combined to produce the final result list.
This parallelization strategy reduces execution time and allows
for processing larger databases by leveraging the combined
available GPU memory.

Database streaming. We implemented several optimiza-
tions to increase processing speed and handle large datasets
efficiently. We minimize host-GPU communication latency
by partitioning the reference database into smaller batches,
allowing processing to be pipelined via asynchronous CUDA
streams. Here, data transfer of the next batch ¢ + 1 from the
host to GPU is overlapped with the processing of the current
batch ¢ on GPU. Notably, this approach allows us to efficiently
handle databases larger than the available GPU memory.
Furthermore, to maximize GPU memory utilization and min-
imize data transfer, the workflow caches as many reference
database batches as fit in GPU memory, and re-uses them
for subsequent queries without re-transfer from the host.
The streaming capability further extends to reading database
batches directly from disk storage when the dataset exceeds
available host RAM.

GPU server. MMseqs2 workflows are constructed through
scripts that repeatedly invoke the mmsegs binary, each time
specifying different modules to execute. We observed that
each invocation requiring GPU resources incurs a CUDA ini-
tialization overhead of approximately 300ms. This startup cost
can become substantial in complex workflows; for instance,
during the ColabFold MSA search, the ungappedprefilter
module is called six times (three iterative searches each against
the UniRef30 and ColabFoldDB databases).

To circumvent this overhead, we introduced an optional, dedi-
cated GPU server mode. Here, we launch a persistent back-
ground process that maintains the GPU context and becomes
responsible for database caching and executes alignment com-
putations. Subsequent mmseqs ungappedprefilter invoca-
tions communicate their requests to this running server process
via Linux shared-memory, thereby avoiding the initialization
penalty and reducing overall workflow execution time.

B.3. GPU-accelerated Smith-Waterman-Gotoh. In addition to
the gapless filter on GPU, we implemented a version of Smith-
Waterman-Gotoh with affine gap penalties operating on pro-
tein profiles (PSSMs) as a modification of CUDASW++4.0
(26) to align reference sequences to the same query profiles
used in the filter. As described in the previous section, this
required to transpose the computed DP matrix to place the
profile along the x-axis, and leveraged the same paralleliza-
tion strategies. Matrix tiles are processed by thread groups of
size 4, 8, 16, or 32 using in-register computations with 32-bit
capacity to avoid overflows.

In contrast to the filter algorithm, the Smith-Waterman-Gotoh
algorithm does not allow for threads in the same group to
operate on the same row in parallel since cells depend on their
left neighbor. Consequently, a wavefront pattern is used to
have threads work on different rows along the minor diagonals.
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B.4. Cell Updates Per Second (CUPS). Speed of dynamic pro-
gramming (DP) algorithms is typically reported by converting
runtime into the number of DP matrix cell updates that are
performed per second; e.g., TCUPS (Trillions of Cell Updates
Per Second) as TCUPS = (3°,m; x n;)/(t x 1012), where ¢
is the runtime in seconds and m; and n; are the lengths of the
aligned sequences.

Efficiency analysis We analyzed whether the proposed al-
gorithm is able to effectively remove overheads incurred by
memory accesses using half2 arithmetic by modeling the theo-
retical peak performance (TPP) of the utilized GPU hardware
as:

TPP — #SMs x Throughput_per_instruction x Clock

Cycles_per_cell_update
D
Where

e Throughput_per_instruction refers to the number
of results per clock cycle per streaming multiprocessor
(SM) of native arithmetic instructions on the consid-
ered hardware. A corresponding table for devices of
various compute capabilities is provided in the CUDA
documentation

e Cycles_per_cell_update models the maximum at-
tainable performance constrained by the algorithm struc-
ture and the specifications of the architecture. In our
case, referring to the theoretical minimal number of
clock cycles needed by an individual SM of the utilized
GPU to calculate one DP matrix cell in M.

Cycles_per_cell_update can initially be determined by the
inner loop in Algorithm [I] and thus set to three (i.e., two
max instructions and one add instruction). However, as the
L40S GPU used in most of our experiments enables dual
ports add floating point operations, allowing to simultane-
ously issue add and max operations in a single SM cycle,
Cycles_per_cell_update can be set to two (when using
single-precision arithmetic) and to one (when using half2
arithmetic).

Disregarding the lookup operation to the PSSM, any value to
register movements such as warp shuffles, any data transfers,
and based on the specified Throughput_per_instruction
of 64 for max instructions (the dependency bottleneck) on the
L40S (compute capability 8.9), we can use Eq. [I]to calculate
the TPP for half2 arithmetic on the L40S as follows:

142 x 64 x 2.56 GHz
1

Provided the synthetic benchmark on a single L40S achieves
a performance of up to 13.5 TCUPS (Fig. [Id), our approach
is able to achieve an efficiency of 58% on an L40S GPU
architecture, which shows that our optimizations, such as
warp-shuffles and PSSM lookups from shared memory, are
able to effectively transform the problem to compute-bound
and minimize overheads from memory accesses.

TPP(L40S) = =23.2 TCUPS

Uhttps://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html#arithmetic-instructions, Accessed May 12th, 2025.
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C. MMseqs2-GPU Workflow

The MMseqs2-GPU workflow starts with query and refer-
ence sets residing in CPU RAM. For the first step, i.e. filter-
ing, query profiles are transferred to the GPU and permuted
to enable efficient CUDA shared memory accesses during
lookup. Additionally, the reference set is partitioned into
smaller batches, which are transferred to the GPU. Through-
out the filtering step, gapless alignment scores are stored
for subsequent sorting. In the next stage, after all reference
database batches have been processed, gapped, i.e. Smith-
Waterman-Gotoh alignment scores are computed for top ref-
erence sequences satisfying inclusion thresholds using the
same partitioned approach used for gapless alignment. Fi-
nally, the filtered reference sequences and their corresponding
alignment scores are transferred back to the CPU.

D. Hardware setup

With the exception of benchmarks executed on Google Colab
compute, the same base system hardware setup was used.
Specifically, the system featured two AMD EPYC 7742 64-
core (2.25 GHz; Thermal Design Power (TDP) of 225W)
CPUs (effectively 128 physical cores running 256 logical
threads and TDP of 450W), with 1'TB of DDR4 RAM and
2TB NVMe Intel SSDPE storage.

For the GPU benchmarks, the base system configuration ad-
ditionally included either an L4, A100, L40S, or H100 PCle
NVIDIA GPU, which are set at TDP 72, 300, 350 and 350
Watts, respectively. The energy efficiency measurements addi-
tionally include a one socket EPYC 7313p 16-core (3 GHz;
155W TDP) system, with 256GB DDR4 RAM and L4 GPU.

E. Benchmarks

E.1. Synthetic TCUPS benchmark. To measure TCUPS perfor-
mance for MMseqs2-GPU (Fig.[Td), we performed a synthetic
benchmark generating sequences of equal lengths for several
lengths. For each possible DP matrix tile size [, a randomly
generated query of length [ was aligned to a database of five
million randomly generated sequences of length /. Runtime
was then converted to TCUPS. We executed the same bench-
mark using the CPU implementation of the gapless alignment
described in “CPU-SIMD gapless filter”. We show speedup
for each length [ of the respective execution on 1, 2, 4 and
8 GPUs vs. the CPU execution. This synthetic benchmarks
explores the best case scenario by employing uniform length,
as this avoids reduced hardware utilization caused by adja-
cent CUDA thread groups processing different reference se-
quence lengths. For real-world database searches, the variable
length effect is minimized by sorting the database sequences
by length in ascending order.

E.2. Database scaling  benchmark.To  investigate
performance characteristics of the MMseqs2-GPU
ungappedprefilter implementation when the avail-
able GPU memory is exceeded, we measure TCUPs on real
amino acid sequences based on the sequence sets described
in section “Sensitivity”, with additional measurements
conducted by extending the reference sequences 4, and 16

times (Fig. [Te). We extrapolated the runtime for the 16x
replicated database on one L40S from a subset of 500 random
queries out of all 6370 queries. TCUPS are similar for
MMseqs2-GPU combined gapless and gapped executions
for 1, 2, 4, 8, and 16 times the reference sequence set
(Supplementary Figure[T).

E.3. Sensitivity. The same approach and datasets described in
MMseqs2 (@) were used to conduct the sensitivity benchmark.
This benchmark involved annotating full-length UniProt se-
quences with structural domain annotations from SCOP (37),
designating 6,370 sequences as queries and 3.4 million as ref-
erence sequences. The full-length query sequences included
disordered, low-complexity, and repeat regions, which are
known to cause false-positive matches, especially in iterative
profile searches. Additionally, 27 million reversed UniProt
sequences were included as reference sequences (resulting in
a total of 30,430,281 reference sequences).

Like in previous work, true-positive matches are defined as
those with annotated SCOP domains from the same family,
while false positives match reversed sequences or sequences
with SCOP domains from different folds. The sensitivity of a
single search is measured by the area under the curve (AUC)
before the first false-positive match (ROC1), indicating the
fraction of true-positive matches found with a better E-value
than the first false-positive match. Sensitivity results for the
various tools and modes, measured as ROC1, are summarized
in the table below, with full benchmark details available in
Supplementary Data 1.

Tool Mode Sens. 1-it 2-it 3-it
MMseqs2-CPU | -s 8.5 0.391 | 0.606 | 0.665
MMseqs2-CPU | gapless 0.4 | 0.612 | 0.669
MMseqs2-GPU | gapless 0.4 | 0.612 | 0.669
BLAST 0.401

PSI-BLAST 0.574 | 0.591
JackHMMER 0.4 | 0.614 | 0.685
Diamond ultra sens 0.409

E.4. Speed. For speed benchmarks, the same query and refer-
ence sequences as for the sensitivity benchmarks were used,
and methods’ parameters were set to reach comparable sen-
sitivity where possible. Specifically, we ran the following
methods:

+ JackHMMER v3.4 (2): at 1 iteration (equivalent to
a phmmer search), with an E-value cutoff of 10,000,
using 128 threads (corresponding to the real number of
cores, which differs from the actual number of threads),
omitting the alignment section for the generated output.

* BLAST v2.16.0 (I): with an E-value cutoff of 10,000,
using 128 threads, and limiting the number of filtered
reference sequences to 4,000.

» PSI-BLAST v2.16.0 (I): at 2 iterations, with an E-
value cutoff of 10,000, using 128 threads, and limiting
the number of filtered reference sequences to 4, 000.
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¢ Diamond ultra sensitive v2.1.9 (E]): using blastp, the
ultra-sensitive setting, with an E-value cutoff of 10,000,
using 128 threads, and limiting the number of filtered
reference sequences to 4, 000.

* MMseqs2-CPU k-mer commit 16-747¢c6 ({@): using
easy-search and the sensitivity at 8.5, with an E-value
cutoff of 10,000, using 128 threads, and limiting the
number of filtered reference sequences to 4, 000.

* MMseqs2-CPU gapless commit 16-747¢6 (d): using
easy-search and the prefilter mode at 1, with an E-
value cutoff of 10,000, using 128 threads, and limiting
the number of filtered reference sequences to 4,000.

* MMseqs2-GPU commit 16-747c6: using
easy-search, the prefilter mode at 1 and en-
abling the GPU usage via the --gpu 1 --gpu-server
1 options, with an E-value cutoff of 10,000, using 1
thread, and limiting the number of filtered reference
sequences to 4,000.

We measured the total execution time of these methods based
on the invocations above, and derived an average per-sequence
execution. Additionally, we set up searches in either single
batch mode, emulating the behavior in e.g., a protein 3D struc-
ture prediction server, or by batching sequences into groups
of 10 and 100 sequences, or one batch of 6370 sequences,
emulating the annotation of small protein sets or proteomes.
Due to the prohibitive execution time of JaickHMMER (2)) in
any batch mode, or Diamond in single-batch mode, we
reduced the query set to only 10%, or 637 query sequences
to extrapolate results for the remaining cases. As batch 6370
would require to run 100% of the query set, and batching
results from 1 to 100 for 10% of the query set showed negli-
gible effect for JaickHMMER, we excluded running this final
benchmark with sustainability in mind.

E.5. Diamond scaling. Diamond (3)) was developed to anno-
tate vast metagenomic databases, and its performance is tuned
to large query sets and batch sizes. In order to allow a fair
comparison of Diamond’s performance, we thus performed a
query database and batch scaling benchmark exclusively for
Diamond. For this benchmark, all previous execution parame-
ters were retained with the exception of the query database,
since up-sampling the 6370 query set to obtain larger query
database sizes is not a realistic setting. Instead, we randomly
sampled (without replacement) from UniRef90 (38)) to obtain
query databases of size 100, 1,000, 10,000 and 100,000 se-
quences. We set the batch size equal to the database size for
each run.

E.6. Structure prediction. To compare total runtime and the
effect that MSA choice has on structure prediction accuracy,
we replicated the ColabFold (28) benchmarks to predict the
CASP14 free-modeling queries (FM).

We measured MSA input generation and model inference
times for the three configurations listed below. For all three
configurations, we omit template search and relaxation and
execute the default three recycling iterations.
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e AlphaFold2: a baseline-configuration using the Al-
phaFold2 (II) pipeline, utilizing JackHMMER (2)
and HHblits (ZT)) to compute input MSAs from three
databases, and structure prediction inference using
AlphaFold2 weights.  Specifically, this configura-
tion utilizes the following homology search databases:
UniRef90 2020_01 (JackHMMer, 139M sequences),
MGnify 2018_12 (JackHMMer, 287M sequences), Uni-
clust30 2018_08 (HHblits, 15M profiles and 124M to-
tal), BFD first release (HHblits, 66M profiles and 2.1B
total). Five AlphaFold models were run on one L40S
GPU via the docker container from github.com/google-
deepmind/alphafold (commit f251de6).

ColabFold MMseqs2-CPU: a configuration using Co-
labFold v1.5.5, utilising MMseqs2 (commit 22115b)
with default k-mer on CPU to compute input MSAs,
and structure prediction inference loading AlphaFold2
weights. By default ColabFold utilizes recent versions
of the databases, however, we retrieved older versions to
approximate a fair comparison to the AlphaFold2 con-
figuration, specifically UniRef30 2021_03 (29M repre-
sentatives and 277M total) and ColabFoldDB 2021_08
(209M representatives and 739M total). Five AlphaFold
models were run on one L40S GPU using ColabFold
code obtained from github.com/sokrypton/ColabFold
(commit 09993a8).

ColabFold MMseqs2-GPU: a configuration using
ColabFold v1.5.5, utilising MMseqs2-GPU (commit
22115b) with default gapless running on one L40S GPU
to compute input MSAs, and structure prediction infer-
ence loading AlphaFold2 weights. We used the same
databases and codebase as in the ColabFold MMseqs2-
CPU configuration. All five models were run on one
L40S GPU.

Structure prediction inference in all three configurations lever-
aged an L40S. To compare structure prediction accuracy, we
computed several metrics between the predicted and ground
truth structures, and focused results on template modeling
score (TM-score; 139).

E.7. Cloud cost. We compared cloud cost to run the homology
search methods presented in the speed benchmark. To do so,
we retrieved on-demand hourly cost for AWS EC2 instances
(retrieved on 2024/09/24) that best matched our hardware
setup for instances in the US East (Ohio) region. We obtained:

¢ CPU-based methods: for JaickHMMER, Diamond (ul-
tra sensitive), MMseqs2-CPU k-mer, and BLAST, we
selected the instance “c7a.32xlarge” with 128 physical
CPU cores and 256 GBs of system RAM at an hourly
cost of $6.57.

¢ GPU-based method: for MMseqs2-GPU, we selected
the instance “g6e.xlarge” with 2 physical CPU cores
and 32 GB of system RAM and one L40S GPU at an
hourly cost of $1.86. For cloud costs utilizing 2 and 4
L40S, we selected the instance “g6e.12xlarge” with 24
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physical CPU cores and 384 GB of system RAM and 4
L40S GPUs at an hourly cost of $10.493. For cloud cost
calculations utilizing 8 L40S, we selected the instance
“gbe.48xlarge” with 96 physical CPU cores and 1536
GB of system RAM and 8 L40S GPUs at an hourly cost
of $30.131.

To obtain per-query-cost, we multiplied the hourly cost by
the actual total runtime for each method and divided by the
number of queries. All results can be found in Supplementary
Material 1, “Cloud cost estimates”. Note that prices of cloud
instances can differ regionally, and over time. To attempt
a robust comparison, we reported the cost factor (i.e., the
difference in cost compared to a baseline, which we selected
to be MMseqs2-CPU k-mer) rather than the total theoretical
cost.

E.8. Energy consumption. To measure average power utiliza-
tion, we leveraged powerstat and nvidia-smi which allow
to sample hardware counters (Running Average Power Limit;
RAPL) included in CPUs and GPUs, and their memory. We
performed this measurement for the full query set in single-
batch mode for various methods. We then multiplied the
power average by the execution times to obtain the total en-
ergy consumption.

E.9. Foldseek. We benchmarked Foldseek using
MMseqs2-GPU by sampling 6370 protein structures repre-
sented as 3Di strings (avg. length: 261 3Di letters). These
were sampled from AFDBS50 v4 (53.6M entries, avg. length:
264 3Di letters) against the same database. The database was
indexed using createindex and stored in memory.

* Foldseek-CPU k-mer commit c438b9 (31): using
search with option --db-1load-mode 2 for fast index
reading and 128 threads --threads 128.

* Foldseek-GPU commit c438b9: using search with
option --db-load-mode 2 for fast index reading, 128
threads --threads 128 and --gpu 1 for gapless GPU
alignment.

We retrieved the Foldseek SCOPe-based sensitivity bench-
mark from github.com/steineggerlab/foldseek-analysis (com-
mit 1737¢71). Foldseek-GPU was executed with parameters
--max-seqs 2000 -e 10 --gpu 1. Foldseek-CPU k-mer
was executed with parameters -s 9.5 --max-seqs 2000 -e
10.

E.10. Colab benchmark. To compare the speed of MMseqs2-
GPU to JackHMMER on more typically encountered hard-
ware setup, we chose a paid Google Colab Pro environment
with a 6-core/12-thread CPU, 64GB of system RAM and a
NVIDIA L4 GPU with 24 GB RAM. We searched the same
20 CASP14 sequences as in section “Structure prediction”
against the UniRef90 2022_01 (containing 144M proteins;
benchmark performed on October 6th, 2024). As the refer-
ence database is 48.6 GB large, it does not fully fit into GPU
memory (24GBs), leveraging system RAM streaming. We
chose the following parameters for the search:

* JackHMMER v3.4: at 1 iteration (equivalent to a ph-
mmer search), with an E-value cutoff of 10,000, using
12 threads and omitting the alignment section for the
generated output.

* MMseqs2-GPU commit 81ddab: using easy-search,
enabling the GPU usage via the —gpu 1 options, with an
E-value cutoff of 10,000, using 12 thread, and limiting
the number of filtered reference sequences to 4, 000.
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Data utilized to perform benchmarks for this study are
freely available. For speed, sensitivity, and energy con-
sumption benchmarks, we leveraged target sequences stored

at mmseqs.steineggerlab.workers.dev/targetdb.fasta.gz
and reference sequences stored at mm-
segs.steineggerlab.workers.dev/query.fasta. For the

folding benchmark, CASP14 targets are available at pre-
dictioncenter.org/casp14/index.cgi, while the reference
ColabFold databases are available at colabfold.mmseqs.com.
For Foldseek benchmarks, we retrieved data and scripts from
github.com/steineggerlab/foldseek-analysis.

Code availability

All code developed in this study is available under MIT li-
cense and documented at mmseqs.com. Analysis scripts are
available at github.com/steineggerlab/mmseqs2-gpu-analysis.
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Supplementary Figure 1. Combined gapless and gapped alignment TCUPS.
TCUPS of 1 and 8 GPU executions of the combined MMseqs2-GPU gapless and
gapped alignment workflow for 6370 queries against target sets of 1, 2, 4, 8, and 16
times a 30M protein database (Methods “Sensitivity”). 8 and 16 times executions
exceeds GPU RAM and are processed with database streaming. The latter is
processed with 7.3 TCUPS /11.6 TCUPS ~ 63% of in-memory processing speed.
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