

Fixative-eXchange (FX)-seq: a platform for transcriptomics analysis of PFA-Fixed and FFPE Samples

Han-Eol Park^{1,2,3,4,†}, Yu Tak Lee^{1,2,†}, Jaewon Lee¹, Chae Young Byun¹, Junsuk Lee², Hyelin Ji^{2,3}, Young-Lan Song^{2,3}, Go Eun Ha⁵, Sung-Yon Kim⁶, Junho K. Hur⁷, Eunji Cheong⁵, Eunha Kim⁸, Chung Whan Lee⁹, Yoon Dae Han¹¹, Hyunki Kim¹¹, and Chang Ho Sohn^{1,2,3,*}

†These authors contributed equally to this work.

*Correspondence: Chang Ho Sohn (chsohn@kaist.ac.kr)

¹Graduate School of Medical Science and Engineering, KAIST, ²Graduate Program in Nanobiomedical Engineering, Advanced Science Institute, Yonsei University, ³Center for Nanomedicine, Institute for Basic Science, Yonsei University, ⁴School of Biological Sciences, Seoul National University, ⁵Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University,

⁶Department of Chemistry, Seoul National University, ⁷Department of Genetics, College of Medicine, Hanyang University,

⁸Department of Molecular Science & Technology, Ajou University, ⁹Department of Chemistry, Gachon University, ¹⁰Department of Surgery, College of Medicine, Yonsei University, ¹¹Department of Pathology, College of Medicine, Yonsei University

Single-cell transcriptomic profiling of fixed tissues holds immense potential to bridge molecular biology with structural and clinical insights. Paraformaldehyde (PFA)-fixed samples provide essential spatial context in neuroscience, while clinical formalin-fixed paraffin-embedded (FFPE) archives offer access to annotated pathological specimens and patient outcomes. Yet, this promise has remained largely unrealized due to fixation-induced damage that severely compromises reverse transcription (RT) efficiency, limiting current protocols to fresh or frozen tissues.

Here, we introduce Fixative-eXchange sequencing (FX-seq), a robust and scalable method for single-nucleus RNA sequencing from PFA-fixed and FFPE-treated specimens. FX-seq integrates two key innovations: (1) an organo-catalyst that removes PFA crosslinks under mild conditions to improve *in situ* RT yield, and (2) a regiospecific platinum-based crosslinker that prevents RNA leakage without inhibiting RT. Using FX-seq, we obtained high-quality transcriptomic data from PFA-fixed mouse brain and FFPE-preserved human cancer tissues, demonstrating its broad utility.

By leveraging the intrinsic stability of fixed samples, FX-seq enables efficient multiplexed profiling across multiple timepoints and subjects. This flexibility supports diverse applications, including single-nucleus spatial transcriptomics, multiplexed tissue analysis, and high-resolution snRNA-seq from small anatomical subregions. FX-seq thus establishes a powerful framework for unlocking transcriptomic information from archival and structurally preserved specimens across both basic and clinical research domains.